
Journal of Computational Physics174,510–551 (2001)

doi:10.1006/jcph.2001.6919, available online at http://www.idealibrary.com on

A Critical Evaluation of the Resolution
Properties of B-Spline and Compact

Finite Difference Methods

Wai Yip Kwok,∗ Robert D. Moser,∗ and Javier Jim´enez†
∗Department of Theoretical and Applied Mechanics, University of Illinois at Urbana–Champaign, Urbana,

Illinois 61801; and†School of Aeronautics, Universidad Politécnica, 28040 Madrid, Spain
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Resolution properties of B-spline and compact finite difference schemes are com-
pared using Fourier analysis in periodic domains, and tests based on solution of
the wave and heat equations in finite domains, with uniform and nonuniform grids.
Results show that compact finite difference schemes have a higher convergence
rate and in some cases better resolution. However, B-spline schemes have a more
straightforward and robust formulation, particularly near boundaries on nonuniform
meshes. c© 2001 Elsevier Science
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1. INTRODUCTION

Many physical phenomena involve a broad range of spatial scales. One example is tur-
bulent fluid flows, which have a wide and continuous spectrum of length scales describing
its composition of eddies of different sizes [2]. Simulation of these physical phenomena
requires spatial discretization schemes with high resolution, or in other words, schemes that
can produce accurate numerical results over as broad a range of length scales as possible
for a given discretization.

In numerical simulation of turbulent fluid flows, spectral methods are attractive spatial
discretization schemes due to their very good resolution properties. As a result, many di-
rect numerical simulations (DNS) have been performed with spectral methods in Cartesian
coordinates with various boundary conditions [4, 14]. These include simulations of simple
fundamental flows such as isotropic turbulence, turbulent channel flows [20], and turbulent
boundary layers [35]. One distinctive feature of spectral methods is that they use infinitely
differentiable global basis functions [4]. Two common choices are Fourier series expansions
and polynomial basis functions, with the first being applied to simulations with periodic
boundary conditions and the second to simulations in finite intervals [20, 30]. However, the
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global character of the basis functions also limits spectral methods to simple geometries
and boundary conditions [24], and there is a great need for simulations in complex geome-
tries. This is very important if turbulence simulations are to contribute to many engineer-
ing applications such as external aerodynamics and propulsion systems. Such simulations
would require spatial discretization schemes that not only retain the good resolution prop-
erties of spectral methods, but also provide flexibility with respect to geometries and grid
distribution.

Local numerical representations, such as finite difference and finite element schemes,
have much greater flexibility in discretizing complex geometries, so high resolution schemes
of these types would be of great interest. For example, Lele has studied compact finite
difference schemes for use in problems with a broad range of spatial scales [24], using
Fourier analysis to investigate how well the schemes represent a range of wavenumbers.
There has also been a trend to combine local discretization algorithms and spectral methods.
A typical example of such a confluence of numerical algorithms is the spectral element
method, which is based on finite element and spectral methods [18, 19, 29].

Another choice for local numerical representation is to use splines. Unlike finite difference
methods, spline methods are functional expansion methods that make use of a set of
local basis functions. This property provides us with a straightforward way to imple-
ment boundary conditions. Spline methods are similar to finite element methods as they
both use piecewise polynomial representations. However, spline methods use basis func-
tions that retain a higher degree of continuity. In short, spline methods have much of
the flexibility afforded by the use of local expansions, as in finite elements, and have
the resolution advantage afforded by highly continuous expansions, as in spectral
methods.

In the research reported here, we investigate the properties of spline methods, in particular
spline collocation methods, and their relation to finite difference and finite element methods.
Section 2 introduces the basic properties of spline, compact finite difference, finite element
methods, and their different formulations. The basic resolution properties of these spatial
discretization schemes are presented in Section 3 using Fourier analysis in periodic domains.
Of particular interest are the approximations to the first and second derivative operator,
which are common in equations describing many physical phenomena. In Sections 4 and
5, the first-order wave equation and heat equation are solved with spline collocation and
compact finite difference schemes in bounded domains, in both uniform and nonuniform
grids. Concluding remarks are given in Section 6.

2. NUMERICAL REPRESENTATIONS

The resolution properties of the numerical methods discussed here are most easily un-
derstood in one spatial dimension. Thus, the methods to be evaluated are introduced here in
their one-dimensional form. Spline methods, compact finite difference methods, and finite
element methods will be discussed.

2.1. Spline Methods

Consider a domain divided intoN intervals, a one-dimensional spline is defined to be a
polynomial of degreed in each interval that is continuously differentiabled − 1 times at
the interval boundaries. The boundaries of the intervals are called knots.
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FIG. 1. B-splinesBd
i (x) on uniform knots with knot spacing1x = 1, with (a) d = 0, 1, 2, and 3; and with

(b) d = 2 andi = 1, 2 and 3.

Spline methods have been used before to solve differential equations and fluid mechanics
problems [13, 31, 32]. The work of Kasi Viswanadham and Koneru [39] and Davies [6, 7]
used B-splines as basis functions and the Galerkin formulation. Most of the research,
however, is confined to cubic splines (d = 3). More recently, Kravchenkoet al. [22] and
Shariff and Moser [34] used the basis functions of splines to solve partial differential
equations and simulate turbulent fluid flows. In particular, mesh embedding techniques are
developed to make basis spline methods very effective in solving physical problems in
complex geometries.

To use splines as a representation for the solution of a partial differential equation, it is
necessary to have a convenient basis for the space of spline functions under consideration.
Here the so-called basis splines or “B-splines” as described in [8] and [16] are used. A
B-spline is defined as a normalized spline which has support over the minimum possible
number of intervals. In fact, it has support on onlyd + 1 intervals. As an example, B-splines
for uniformly spaced knots are plotted in Fig. 1a ford up to 3. By using a basis with support
on the minimum possible number of intervals, minimum bandwidth of the resulting matrices
is ensured.

Near a boundary, the basis splines are different than those in Fig. 1a since the presence
of the boundary removes the constraint that the B-splines haved − 1 zero derivatives at the
edge of its interval of supports. An example of the quadratic B-splines near the boundary
is shown in Fig. 1b.

To use the B-splines in a practical computation, one needs to evaluate them and their
derivatives at points in the domain. This will be sufficient to compute the various matrices
representing different linear operators. An efficient and stable technique to evaluate the
B-splines and their derivatives is the recurrence relation described in [8] (see Appendix A).
Both interior and boundary splines are generated this way by formally introducing a mul-
tiplicity of knots at the boundary (see [8] and Appendix A).

Consider the B-spline representation of a possibly nonlinear spatial operatorF operating
onφ. We first postulate an expansion forφ in terms of B-splines of orderd on a selected
knot set:

φ(x) ≈ φ̃(x) =
∑

i

αi B
d
i (x). (1)
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An approximationF̃ to the operatorF is sought that maps splines inSd (i.e., φ̃) to splines
in Sd, whereSd is the space of splines of orderd for the selected knot set. That is

F(φ̃) ≈ F̃(φ̃) = γ̃ =
∑

i

βi B
d
i (x). (2)

There are several ways to generate such an approximation. Two will be considered here,
namely Galerkin and collocation methods.

2.1.1. B-spline Galerkin Methods

In the Galerkin formulation, the approximation of the linear differential operatorD on φ̃
is given by

(
Bd

j , γ̃
) = (Bd

j ,Dφ̃
)
, j = 1, 2, . . . , Nζ , (3)

where (f , g) denotes theL2 inner product
∫

f g dx in the domain andNζ is the number of
B-splines. This forces the error in ˜γ to be orthogonal toSd, thus minimizing theL2 error
in this space. Given the linearity ofD and the representations ofD̃, φ̃, andγ̃ , the above
equation can be written

Nζ∑
i=1

βi
(
Bd

j , Bd
i

) = Nζ∑
i=1

α j
(
Bd

j ,D
(
Bd

i

))
, j = 1, 2, . . . , Nζ . (4)

The inner products of Eq. (4) are the elements of matricesM andD, with Mi j = (Bd
j , Bd

i )

and Di j = (Bd
i ,D(Bd

j )). The matrixM is called the “mass” matrix andD the operator
matrix. To obtain ˜γ givenφ̃, one solves the linear systemMβ = Dα. Note that bothM and
D are banded matrices since individual B-splines have only local support. The bandwidth
w of the matrices is given byw = 2d + 1.

2.1.2. B-Spline Collocation Methods

The collocation formulation imposes different requirements to obtain the coefficientsβi .
Here the approximation ˜γ =∑i βi Bd

i of the operatorD on φ̃ must satisfy

γ̃ = Dφ̃ at x = ζ j , j = 1, 2, . . . , Nζ , (5)

which implies

Nζ∑
i=1

βi B
d
i =

Nζ∑
i=1

αiD
(
Bd

i

)
at x = ζ j , j = 1, 2, . . . , Nζ . (6)

The values of the B-splines and their derivatives are the elements of the matricesM and
D, respectively, withMi j = Bd

i (ζ j ) and Di j = [D(Bd
i )](ζ j ). Again, givenφ̃, γ̃ is found

by solving the linear systemMβ = Dα. Using the collocation formulation, the matrix
bandwidthw is given byw = d for oddd.
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2.1.3. Selection of Knots and Collocation Points

To use B-splines in a computation, one first needs to determine the location of the knot
points and for the collocation method the collocation points. In a periodic domain with
N uniform width intervals, there areN knots andN splines spanning the spline space.
Therefore,N collocation points are needed in a collocation scheme. There are only two
locations for the collocation points that preserve the spatial symmetry of the operators:
collocation points at the knots and collocation points at the center of the intervals. The
former is appropriate for odd-order splines, the latter for even.

In a nonperiodic domain, it is more complicated. There areN intervals,N + 1 distinct
knots andN + d collocation points are needed. There are two basic ways to select knots
and collocation points in a finite domain. The first is thatN + d collocation points can be
selected by whatever resolution criteria are appropriate and thenN + 1 of these points can
be chosen to be the knots. Generally, those collocation points that are not knots are near the
boundary, though the knot at the boundary is retained. This is referred to as a “not-a-knot”
condition, which is commonly used in spline interpolation.

The alternative is to start by selecting the knots according to some resolution criteria.
This is more natural since the knots directly determine the spline space and therefore are
more closely related to resolution than the collocation points. Furthermore, in a Galerkin
scheme all one selects are the knots, so direct comparison of Galerkin and collocation
is only possible if one starts by selecting the knots. Selecting the collocation points can
then be done in several ways, but there are two choices that seem particularly appropriate:
place a collocation point at the maximum of each B-spline function or place it at the
centroid of each B-spline function. These prescriptions have the advantage that they are
applicable throughout the domain (nothing special about the boundary), and they associate
a collocation point directly with each B-spline function. This latter property is useful for
applications in multidimensional embedded grids of the type described by Shariff and Moser
[34]. Note that with uniform knots away from the boundary, the symmetry of the B-splines
places the maxima and centroid at the same location: at the knots or at the center of the
intervals for odd and even splines, respectively. In the current paper, collocation points at
the B-spline maxima are selected, because this naturally places a collocation point at the
boundary, which is useful for imposing boundary conditions. Two knot distributions are
used: uniformly spaced knots and nonuniform knots distribution according to

x = 0.5

{
1− cos

[
π (N− 1)ξ + 1

N+ 1

]
cos
[
π 1

N+ 1

] }
(7)

whereξ = j/N for j = 0, 1, . . . N. This nonuniform grid is basically a Chebyshev grid
with the boundary singularities removed. It is denser near the boundary.

2.2. Compact Finite Difference Methods

Compact finite difference schemes have long been applied to fluid mechanics and other
physics problems [17, 23, 33]. Recently, higher order compact finite difference schemes
have seen increasing use in the direct numerical simulation of complex fluid flows [12, 28].
Lele presented a comprehensive study on the compact finite difference methods [24].
Consider a uniform mesh where the nodes are indexed byi . The independent variable
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at the nodes isxi and the function values at the nodesvi = v(xi ) are given. The compact
schemes are derived by writing approximations of the form:

βv′i−2+ αv′i−1+ v′i + αv′i+1+ βv′i+2 = c
vi+3− vi−3

61x
+ b

vi+2− vi−2

41x
+ a

vi+1− vi−1

21x
.

(8)

Similarly, approximations to the second derivative operator are derived by the following
relationship:

βv′′i−2+ αv′′i−1+ v′′i + αv′′i+1+ βv′′i+2

= c
vi+3− 2vi + vi−3

9(1x)2
+ b

vi+2− 2vi + vi−2

4(1x)2
+ a

vi+1− 2vi + vi−1

(1x)2
. (9)

The relations between the coefficientsa, b, c, andα, β are obtained by matching the
Taylor series coefficients of various orders. Higher orders can be obtained by including
more nodes in the above two equations.

In this study, compact schemes with the same stencil size on both sides of the equations are
selected (c = 0 in Eqs. (8) and (9) for example). This is because mass and operator matrices
with the same bandwidth is a property shared by B-spline methods. All the coefficients
then are used to match the Taylor series to as high an order as possible. The value of
the coefficients are listed in Tables I and II for schemes with matrix bandwidthw up
to 11. Schemes in which convergence order is sacrificed to improve resolution have also
been proposed (see [24] and Table I). Note that since no restriction is imposed on the
coefficients other than those from Taylor series matching, mass matrices associated with
the first, second, and higher derivatives are all different. This issue will be addressed in
more detail in Section 6.

2.3. Finite Element Methods

Most of the finite element applications in fluid dynamics use the Galerkin finite element
formulation [11]. The application of finite element method to fluid mechanics is treated by
Thomasset [37] and Baker [1].

In this study, one-dimensional finite elements withC0 andC(d−1)/2 continuity are used,
whered is the degree of polynomials.C(d−1)/2 continuity is the highest that can be imposed
while preserving the iso-parametric property of the elements. These are commonly called
Hermite finite elements. As with B-splines, the finite elements are polynomials on a series
of knots (element boundaries). However, because a lower order of continuity is imposed,
there are many more degrees of freedom per interval (element). If there areN intervals,
then there would bed N and d+ 1

2 N degrees of freedom forC0 andC(d−1)/2 finite elements,
respectively. In this paper, only finite element Galerkin methods are considered, though
collocation methods are also possible. Note that this method of increasing the local degree
of the polynomial shape-function is very similar to the “p” finite element method [10],
in which an element may neighbor an element having different polynomial order. The
main advantage of finite element methods with low order of continuity is flexibility with
respect to geometry. In most applications of finite element methods, elements are typically
chosen to be at most quadratic [3, 9], and consequently, a high order of convergence is not
achieved. This is exactly opposite to the characteristics of spectral methods. The intention to
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TABLE I

Table of Coefficients for Discretized First Derivative Operators Using Compact

Finite Difference Schemes

Band-width Order α1 α2 α3 α4 α5

3 2 2.822510141559E-01 0 0 0 0

3 4
1

4
0 0 0 0

5 6 4.907480792180E-01 3.935368647117E-02 0 0 0

5 8
4

9

1

36
0 0 0

7 12
9

16

9

100

1

400
0 0

9 16
16

25

4

25

16

1225

1

4900
0

11 20
25

36

100

441

25

784

25

15876

1

63504

Band-width Order a1 a2 a3 a4 a5

3 2 1.564502028312E+00 0 0 0 0

3 4
3

2
0 0 0 0

5 6 1.450612391632E+00 6.09591139745939E-01 0 0 0

5 8
40

27

25

54
0 0 0

7 12
21

16

231

250

147

2000
0 0

9 16
144

125

152

125

10704

42875

761

85750
0

11 20
55

54

12760

9261

5115

10976

23045

500094

7381

8001504

Note.The approximations have the form
∑

j
α j ( f ′i+ j + f ′i− j )+ f ′i =

∑
j
aj

fi+ j − fi− j
2 j1x

. For the second-order
tridiagonal and sixth-order pentadiagonal schemes, coefficients are chosen to increase 1% resolution (see
Section 3.2).

combine these two methods comprehensively leads to the development of spectral element
methods [19, 29]. Spectral element methods are basically variational domain decomposition
techniques. The computational domain is broken up into macro-elements within which
variables are represented as high-order polynomial expansions [18]. The work of Patera
[29], Karniadakis [18], and their co-workers illustrates the application of spectral element
methods in partial differential equations and fluid mechanics problems.

2.4. Relationship to Other Approximations

There are a variety of other formulations for the first and second derivative (or equiva-
lent) that have not been covered here. Two that are of particular interest, due to their close
relationship to the compact finite difference methods, are the Pad´e finite volume methods
discussed by Kobayashi [21] and the coupled derivative formulation of Mahesh [25]. In
the Pad´e finite volume scheme, a compact reconstruction operator is used to reconstruct
the values of the function being approximated on the volume boundaries, given the cell
averaged values of the functions. These are then the fluxes in a finite volume representa-
tion of the convection equation. A similar reconstruction of the derivative at the volume
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boundary yields a compact finite volume representation of the diffusion equation. However,
when the relevant reconstruction operator is integrated into the convection or diffusion
equation, the same overall operator as the corresponding compact finite difference approx-
imation is obtained. Thus, the error properties of the compact finite differences described
above are equally applicable to the compact finite volume schemes of Kobayashi [21].
This is true, however, only for the infinite or periodic domain problem. The near-boundary
schemes appropriate for the finite volume representation are different. Kobayashi proposes
a fourth-order boundary scheme for use with the fourth-order Pad´e finite volume method,
but no boundary treatments for use with higher order finite volume representations are
reported.

In the coupled derivative (CD) formulation of Mahesh [25], one takes advantage of the fact
that in many problems one has both a first and second derivative (convection and diffusion).
By computing them together, one is able to obtain a higher order approximation to each (with
the same stencil size) than would be possible by computing them separately. In addition,
even when comparing schemes of the same order, the CD methods have somewhat better
resolution properties than the standard compact finite difference methods. For example the
sixth-order CD first derivative approximation has an error approximately a factor of 3 smaller
than sixth-order Pad´e approximation for wavenumbers less than approximatelykmax/2. For
the second derivative, the effective wavenumber has smaller error at large wavenumber
(k > kmax/2). The matrices needed to implement the CD method have larger bandwidth,
with the result that the computational cost is slightly higher than the standard compact finite
difference methods of the same order [25]. In finite domains, the stable boundary schemes
investigated by Mahesh were third order for the first derivative and fourth order or less for
the second derivative. The effects of the reduced order boundary schemes on resolution
properties of finite domain problems is of concern.

2.5. Basis for Comparison

To compare the resolution properties of the several spatial discretization schemes dis-
cussed above, it is necessary to define the basis of comparison. The question is: comparing
B-spline, finite element, and finite difference methods, what characteristics of these meth-
ods (i.e., what degree polynomials, or what stencil size) should be compared. In this paper
we take the view that comparison should be done between schemes with matrices that have
the same bandwidth. The bandwidth of the matrices is an indicator of the computational
cost of performing the linear algebra associated with the scheme, so methods with similar
linear algebra costs are compared. This is related to the common practice of characterizing
finite difference methods by their stencil size.

There are several reasons that a comparison based on bandwidth is appropriate in the
current context. First, cost is an important consideration and the linear algebra cost for which
bandwidth is an indicator often dominates the computational cost in the numerical solution
of PDEs. Second, commonly used bases of comparison, such as polynomial degree, are not
defined for all methods, or, as with order of accuracy or convergence, may have different
common interpretations in different methods (e.g., order of derivative approximation in
finite difference versus order of function approximation in finite elements). Finally, it is not
always clear which of several accuracy indicators are of most interest, and so should form
the basis of comparison. By making bandwidth (cost) the basis of comparison, one can
more conveniently assess the relative merit of disparate schemes by a variety of measures.
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Of course, there are many computational costs that are associated with the numerical
solution of any given problem, not all of which scale with the bandwidth. These will vary
with the details of the problem being solved. So, any general cost based comparison like
this is inherently imperfect. Nonetheless, when comparing disparate schemes, some basis
for comparison based on cost is appropriate, and matrix bandwidth is the best indicator of
the relative computational complexity of these schemes that we were able to devise.

3. FOURIER ANALYSIS

In this section, a Fourier analysis of the errors associated with the approximation of
differential operators by the several spatial discretization schemes discussed in Section 2 is
presented. The resolution properties of the numerical schemes are most directly investigated
using a Fourier analysis [24, 26, 27, 36, 38], in which the approximations of the operators
in a periodic or infinite domain with a uniform grid are compared.

3.1. Effective Wavenumber and Eigenfunctions

One common measure of how well a differential operator is approximated is the effective
wavenumber. In a periodic or infinite domain, the eigenfunctions of derivative operators
are the complex exponentials, and the eigenvalues of thenth derivative are(ik)n, wherek
is the wavenumber of the complex exponential andi = √−1. The effective wavenumbers
k̃ are obtained from the eigenvalues of the approximate derivative operatorsM−1D as

k̃ j = n

√
λ j

i n , whereλ j is the j th eigenvalue of the approximate operators. For central schemes
such as those studied in this section,k̃ is real. Perhaps more important than the effective
wavenumber is the error in the eigenvalue|λ− (ik)n|. Also of interest is how closely the
eigenfunctions of the approximate operator correspond with the exact eigenfunctions (the
complex exponentials).

While the effective wavenumber has been widely studied as an indicator of the accuracy
and resolution of approximate derivative operators, the accuracy with which the eigenfunc-
tions of the operators (the complex exponentials) are represented has not generally been
considered. The accuracy of the eigenfunctions of the approximate operators is important
because they are a necessary part of the description of the operators (accurate eigenvalues
is not enough). The accuracy of the eigenfunctions is clearly related to the ability to ap-
proximate the complex exponential, which is also important. In finite element and B-spline
methods, the error in a numerical solution of a problem is related to and is certainly limited
by this approximation error.

One reason that eigenfunctions have been less often examined is that in finite differ-
ence methods, the circulant nature of the operator matrices ensures that the eigenfunctions
of the operators exactly represent the values ofeikx at the finite difference grid points.
However, with methods based on functional representations, one can measure theL2 er-
rors ‖eikx −ψ j (x)‖, whereψ j (x) are the approximate eigenfunctions. For the B-spline
schemes, the matricesM andD are circulant. Therefore, the approximate operator has the
same eigenfunctions for all derivatives. These approximate eigenfunctions are also the same
as those obtained by directly approximating the complex exponential, using the method un-
der considerations (Galerkin or collocation).

The B-spline matrices are circulant because with uniform knots, the basis functions are
all the same, only differing by a spatial shift. For high order finite elements, however,
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there are several different basis functions, so the matrices are not circulant. But they are
block circulant, which allows the eigenvalues and eigenfunctions to be easily determined
(see Appendix B). Since the matrices are not circulant, the eigenfunctions of different
derivatives are not the same, and they are different from the direct approximation of the
complex exponential. However, there is very little difference between the eigenfunctions and
representation of the complex exponential, which has a slightly lower error. Therefore, the
error in the direct Galerkin finite element approximation will be presented in the following
sections.

3.2. Comparison of Accuracy and Resolution

The numerical schemes tested using Fourier analysis include B-spline collocation and
Galerkin formulations, finite element Galerkin formulations, and compact finite difference
methods. Effective wavenumbers associated with the first and second derivatives for the
four methods discussed here are shown in Figs. 2 and 3, respectively. Notice that the wave-
number is normalized by the maximum wavenumberkmax, representable with the numerical
method. For the spline and finite difference methods,kmax= π

1x , where1x is the grid or knot
spacing. For theC0 or C(d−1)/2 finite element schemes,kmax= dπ

1x or (d+ 1)π
21x , respectively,

FIG. 2. Effective wavenumber̄k of the first derivative operators for matrix bandwidth(a)3,(b)7,(c)11: - - - - ,
B-spline; – – –,compact finite difference;· · · · · ·, C0 finite element Galerkin; -·-·-, C(d−1)/2 finite element Galerkin;
——, exact differentiation. For bandwidth equals 3, the three schemes yield the same result. For bandwidth equals
7 and 11, the difference between B-spline andC(d−1)/2 finite element Galerkin schemes is indistinguishable.
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FIG. 3. Effective wavenumber̄k of the second derivative operators for matrix bandwidth(a) 3, (b) 7,
(c)11: - - - -,B-spline; – – –,compact finite difference;· · · · · ·,C0 finite element Galerkin; -·-·-,C(d−1)/2 finite element
Galerkin; ——, exact differentiation. For bandwidth equals 3, B-spline and finite element yields the same result.

since there ared or (d + 1)/2 degrees of freedom per element. This definition ofkmax is
appropriate for finite elements, since the number of Fourier modes that can be represented
and the size of the calculation are determined by the number of degrees of freedom in the
representation, not by the size of the elements.

There are several things to note about the effective wavenumbers. First, for a given
matrix bandwidthw, k̃ is identical for B-spline collocation and Galerkin methods. This is
despite the fact that for collocation, the order of the splines is higher (d = w) than for the
Galerkin (d = w− 1

2 ). This identity was noted by Swartz and Wendroff [36]. Second, for
a tridiagonal matrix, the finite element scheme (linear elements) is identical to the spline
Galerkin method (linear splines). For first derivatives, the effective wavenumber is also the
same as that for compact finite difference, which is the fourth-order Pad´e scheme. For the
second derivative, however, they are different. Finally, the high-order (large bandwidth)
finite element effective wavenumbers depart suddenly from the exact result, effectively
limiting the range of wavenumbers for whichk̃ is a good approximation ofk.

The errors in the eigenvalues|λ− (ik)n| for the first and second derivatives, and errors
in representing the complex exponential are plotted in Figs. 4, 5, and 6, respectively. In
comparing the different methods, the most obvious difference is the rate of convergence at
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FIG. 4. Error in the eigenvalue of first derivative operators for matrix bandwidth(a) 3, (b) 7, (c) 11: ——,
B-spline; - - - -, compact finite difference; – – –,C0 finite element Galerkin. -·-·-, C(d−1)/2 finite element Galerkin.
For bandwidth equals 3, all schemes yield the same result. In (d), nonmaximum order high-resolution schemes are
shown: ——, bandwidth= 3, fourth(maximum)-order;- - - -, bandwidth= 3, second-order; – – –, bandwidth= 5,
eighth(maximum)-order; -·-·-, bandwidth= 5, sixth-order.

small k: these curves asymptotically approach zero according to their theoretical conver-
gence rate as shown in Table III.

Note that the compact finite difference convergence rate is significantly faster for largew.
This is possible because in the finite difference method, the “mass” matrix can be different

TABLE III

Order of Convergence of the Errors of Eigenvalues

and Representation of the Complex Exponential

Eigenvalue of the Eigenvalue of the
Numerical first derivative second derivative Complex

scheme operator operator exponential

Finite element Galerkin kw+2 kw+1 k
w+1

2

B-spline Galerkin kw+2 kw+1 k
w+1

2

B-spline collocation kw+2 kw+1 kw+1

Compact finite difference k2w−1 k2w NA

Note.w is the matrix bandwidth.
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FIG. 5. Error in the eigenvalue of second derivative operators for matrix bandwidth(a) 3, (b) 7, (c) 11: ——,
B-spline; - - - -, compact finite difference; – – –,C0 finite element Galerkin. -·-·-, C(d−1)/2 finite element Galerkin.
For bandwidth equals 3, B-spline and finite element yields the same result.

for each order derivative. In contrast, by the nature of functional expansion methods, the
mass matrix is the same for all derivatives that can be determined from the representation.
If this restriction were imposed on the compact finite difference methods, the same order
of convergence as the spline and finite element methods would be obtained.

Another property of the approximate operators is the behavior of the error at largek.
This is important because it determines the range of spatial scales that can be resolved by
the numerical method. There is no universally used measure of this resolution property
of numerical methods. One measure proposed by Lele [24] is the lowest wavenumber
(k/kmax) at which the error crosses some arbitrary threshold (say 0.1), giving the fraction of
the maximum wavenumber range that is represented to this accuracy or better. In Table IV,
this resolved fraction for 10%, 1%, and 0.1% error in the eigenvalues and eigenfunctions is
listed for the numerical schemes discussed.

The results discussed above have included only compact finite difference schemes with
maximum possible order for the given bandwidth (or stencil size). However, Lele [24]
pointed out that one could attain improved resolution properties by decreasing the order
of accuracy for a given bandwidth and using the extra degrees of freedom to improve the
resolved fraction. The error in first derivative effective wavenumber for two such schemes
(bandwidth 3 and 5) are shown in Fig. 4d, along with that of the corresponding maximum
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FIG. 6. L2 error in the representation of the complex exponential with wavenumberk for matrix bandwidth
(a) 3, (b) 7, (c) 11: ——, B-spline collocation; - - - -, B-spline Galerkin; – – –,C0 finite element Galerkin and
-·-·-, C(d−1)/2 finite element Galerkin. For bandwidth equals 3, B-spline Galerkin and finite element Galerkin yield
the same result.

order scheme. The coefficients for these schemes are also listed in Table I. Each of the
high-resolution schemes has an order of accuracy two lower than the maximum possible.
This frees one degree of freedom in the scheme which was used to increase the 1% re-
solved fraction as much as possible. For the tridiagonal scheme, the 1% resolved fraction
is increased from 0.35 to 0.52 and in the pentadiagonal case from 0.61 to 0.77. However,
the magnitude of the resolved fraction improvement, as well as its importance necessarily
decreases with increasing bandwidth and order of the approximation. Also, these schemes
tuned to improve 1% resolved fraction degrade the 0.1% resolved fraction, and improve
the 10% resolved fraction only marginally. Thus, in using such methods, one needs to be
confident that the error level one is targeting is in fact critical, since the high resolution
property of the schemes will not be manifested for other error levels. Finally, the resolution
improvements discussed here are only for the periodic domain case. In bounded domains,
boundary schemes that preserve these properties would need to be developed. Because of
these complications, we will consider only the maximal order compact finite difference
schemes for each bandwidth, and consider their resolution properties to be representative
of what is possible with such schemes. One should keep in mind that for any particular
purpose, it may be possible to use the flexibility of compact finite difference methods to
attain somewhat better resolution properties by reducing the order or accuracy.
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TABLE IV

Resolved Fraction for Eigenvalues of First and Second Derivative Operators,

and Eigenfunction Representation

(a)d/dx

C0 finite C(d−1)/2 finite
B-spline collocation Compact finite difference element Galerkin element Galerkin

Band-width 10% 1% 0.1% 10% 1% 0.1% 10% 1% 0.1% 10% 1% 0.1%

3 0.59 0.35 0.20 0.59 0.35 0.20 0.59 0.35 0.20 0.59 0.35 0.20
7 0.80 0.65 0.52 0.84 0.73 0.62 0.82 0.27 0.24 0.80 0.67 0.59

11 0.87 0.77 0.67 0.90 0.83 0.76 0.54 0.50 0.45 0.86 0.78 0.57

(b) d2/dx2

C0 finite C(d−1)/2 finite
B-spline collocation Compact finite difference element Galerkin element Galerkin

Band-width 10% 1% 0.1% 10% 1% 0.1% 10% 1% 0.1% 10% 1% 0.1%

3 0.34 0.11 0.03 0.68 0.39 0.22 0.34 0.11 0.03 0.34 0.11 0.03
7 1.00 0.65 0.48 0.94 0.78 0.66 0.57 0.33 0.23 0.81 0.50 0.32

11 1.00 0.80 0.68 0.99 0.88 0.80 0.59 0.45 0.34 1.00 0.66 0.46

(c) Eigenfunction

C0 finite C(d−1)/2 finite
B-spline collocation B-spline Galerkin element Galerkin element Galerkin

Band-width 10% 1% 0.1% 10% 1% 0.1% 10% 1% 0.1% 10% 1% 0.1%

3 0.68 0.43 0.26 0.46 0.16 0.05 0.46 0.16 0.05 0.46 0.16 0.05
7 0.84 0.70 0.57 0.72 0.47 0.29 0.48 0.25 0.15 0.69 0.35 0.17

11 0.89 0.79 0.70 0.81 0.63 0.48 0.53 0.35 0.21 0.77 0.42 0.27

Despite the fact that the order of convergence for the finite element and spline effective
wave numbers is the same, the errors in the spline methods are lower at any givenk. In
essence, the spline methods have better resolution. This is indicated by Lele’s resolution
measure, as shown in Table IV. The reason for the lower resolution of the finite elements
is the low continuity at the element boundary. One way to understand this (for the first
derivative) is to imagine a high-order finite element functionu evolving according to the
scalar wave equation:∂u

∂t + c∂u
∂x = 0. At the initial time there are discontinuities in first

derivative at the element boundaries. The exact solution would have these discontinuities
propagate into the middle of the element, where they cannot be well represented, leading
to relatively large errors. This scenario suggests that maximum possible continuity at the
knots, that is, splines, is desirable.

The uniform grid periodic analysis is informative, but it does not address two key issues
commonly encountered in numerical simulations, that is, nonuniform grids and boundaries.
The behavior of finite difference methods in particular is at issue since the formulation
discussed in Section 2.2 does not apply directly in these cases. Also, the result that the
eigenfunctions of the derivative operators are recovered exactly (Section 3.1) will not hold.
It is thus of interest to consider model problems in finite domains. Two such problems are
discussed in Sections 4 and 5, namely the first-order wave equation and heat equation. They
will only be applied to the B-spline collocation and compact finite difference schemes, the
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two best methods discussed above. A preliminary analysis of the other schemes indicates
that their performance relative to B-spline collocation and compact finite difference on the
wave and heat equations is consistent with that shown above.

3.3. Isotropy Properties

The resolution results of the previous sections can be easily extended to multiple di-
mensions when a tensor product representation is used. The primary complication is that
the representation introduces an anisotropy because of the introduction of the grid direc-
tions [24, 38]. This anisotropy can be characterized by considering the isotropy of the
approximate gradient operator. Consider the gradient of the two-dimensional complex ex-
ponentialφ = ei k·x, wherek is the wave vector, andx is the coordinate vector. The exact
gradient is given byi kφ, whereas the approximate gradient isi k̃φ, where k̃ is the ef-
fective wavenumber vector with componentsk̃x = k̃(kx) = k̃(k cos(θ)) andk̃y = k̃(ky) =
k̃(k sin(θ)), wherek is the magnitude of the wave vector andθ is the angle it makes with the
x-axis. The functioñk is the one-dimensional effective wavenumber function, as described in
Section 3.1.

The relative integrated square errore2 in the approximate gradient is given by

e2(k)
k2
= |k − k̃|2

k2
=
(

cosθ − k̃(k cosθ)

k

)2

+
(

sinθ − k̃(k sinθ)

k

)2

, (10)

so there is clearly a variation of this error with the angleθ . Assuming that̃k is continuously
differentiable, this error is minimum whenθ = π

4 + nπ
2 and maximum whenθ = nπ

2 . That
is, the error is maximum when the wave-vector is aligned with the grid. If the error ink̃
(i.e.,k− k̃) does not increase monotonicly withk, then there can be other extrema as well.
As is evident in Section 3.2, over most of the wavenumber range for both compact finite
difference and B-spline schemes,k− k̃ can be modeled as

k− k̃ = αkn, (11)

wheren is the order of convergence andα is just a proportionality constant. For thisk− k̃
dependence, the maximum and minimum error can easily be determined:

e2
max(k) =

(k− k̃(k))2

k2
(12)

e2
min(k) =

(k− k̃(k))2

k2
21−n. (13)

This error variation is just due to the fact that whenθ = π/4, thek̃ function is evaluated
atk/
√

2 (twice) rather than atk, so that the error is smaller by a factor of 2n.
Another quantity of interest is the component of the approximate gradient in the direction

of the exact gradient. The ratio of this to the exact gradient is given by

cp(k) = cosθ k̃(k cosθ)+ sinθ k̃(sinθ)

k
. (14)

When solving the two-dimensional wave equation, this is the speed of propagation of the
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FIG. 7. Maximum and minimum (inθ ) error (1− cp) in the phase speed for two-dimensional waves, with
matrix bandwidth(a) 3, (b) 7: ——, B-spline collocation; - - -, compact finite difference. For bandwidth equals
3, B-spline collocation and compact finite difference yield the same result.

numerical solution relative to the exact speed [24]. This quantity also depends on the angle
θ and its difference from one is minimum forθ = π

4 + nπ
2 . Again, the anisotropy can be

characterized by the maximum and minimum ofcp(in θ). Using the above model fork− k̃
we get

(1− cp(k))max= k− k̃(k)

k
(15)

(1− cp(k))min = k− k̃(k)

k
2(1−n)/2. (16)

Note that for this simplek− k̃, e2 = (1− cp)
2; this is not true in general. As an example,

(1− cp(k))max and(1− cp(k))min are shown in Fig. 7 based on the actualk̃ for several
schemes. Note that maximum and minimum curves are separated a constant ratio of ap-
proximately 2n, consistent with the above analysis.

The above analysis makes it clear that the anisotropy of the approximate gradient operator
is governed directly by the errors iñk. Thus, when using tensor product representations of
high resolution schemes in whichk− k̃ is small over a wide range of wavenumbers, the
anisotropy errors will also be small over the same range of wavenumbers.

4. FIRST-ORDER WAVE EQUATION IN BOUNDED DOMAINS

In this section, B-spline collocation methods and compact finite difference methods are
used to solve the first-order wave equation in nonperiodic domains. The problem is defined
as

ut + ux = 0 for 0< x < 1,
(17)

u(0, t) = exp(−ikt).

The exact solution assuming periodicity in time is

u(x, t) = exp(ik(x − t)). (18)
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For numerical solution, it is assumed thatu(x, t) takes the formu(x, t) = v(x) exp(−ikt)
and solves the following equations forv(x):

ikv = dv

dx
, v(0) = 1. (19)

The equation is discretized with B-spline collocation and compact finite difference
schemes on both uniform and nonuniform grids.

4.1. B-Spline Collocation Formulation

As mentioned in Section 2.1.3, collocation points at the B-spline maxima are selected.
In general, using this “B-spline maxima” collocation formulation with splines of orderd,
matrices withd + 1 nonzero diagonals will be obtained. In the case of uniform grids away
from the boundary, there are onlyd nonzero diagonals as the maxima of splines coincide
with the knot points. After discretization, a matrix equationiωMα = D1α is obtained,
whereM and D1 are the mass and first derivative operator matrix, andα is the B-spline
coefficient vector.

The boundary condition is implemented by replacing the operator at the boundary collo-
cation point withv0 = 1.

4.2. Compact Finite Difference Formulation

Lele presents a comprehensive study of high resolution finite difference schemes [24].
In his paper, the effective wavenumber in a periodic domain is investigated. For domains
with nonperiodic boundaries, the same analysis is used to obtain the effective wavenumbers
both for the interior and the special boundary schemes. The effective wavenumbers for the
boundary schemes are in general complex, with the real part associated with the dispersive
error and the imaginary part associated with the dissipative error. The conservative formu-
lation, eigenvalue analysis, and stability limits for explicit schemes are also presented. For
the details, the reader is directed to [24].

In this section, two issues are addressed. The first is an alternative approach to studying the
boundary formulation, instead of the effective wavenumber analysis of Lele. The second is
the formulation of schemes with nonuniform grids. The same problem is then solved which
offers direct comparison with the B-spline collocation method.

4.2.1. Boundary Formulation

To discretize the hyperbolic equation, the numerical schemes need to resolve the traveling
waves in the domain. The boundary formulation is studied using normal modal analysis.
Normal modal analysis is also used by Carpenteret al. [5] to investigate the stability of
boundary treatments for compact finite difference schemes. The similarities of these two
analyses will be pointed out after the description of the current boundary formulation.

In the interior, the compact finite difference approximation of the first derivative is derived
from Eq. (8), which can be rewritten more generally as

v′i +
m∑

j=1

α j (v
′
i+ j + v′i− j ) =

m∑
j=1

aj
vi+ j − vi− j

2 j1x
, (20)



CRITICAL EVALUATION OF THE RESOLUTION PROPERTIES 529

wherem is related to the matrix bandwidthw by m= w− 1
2 . Knowing thatv′ = ikv,

m∑
j=1

cj vi− j + ikvi −
m∑

j=1

c∗j vi+ j = 0 (21)

is obtained, wherecj = aj

2 j + iα j k1x andc∗j is the conjugate ofcj . This can be interpreted

as a linear recursion relation forvi . Such a recursion has solutions3 j , where3 is a function
of k. Substitutingv j = 3 j into Eq. (21), the characteristic polynomial is obtained,

m∑
j=1

cj3
− j + ik −

m∑
j=1

c∗j3
j = 0 (22)

which has 2m roots. In general, if3+ is a root, then3− = 3∗−1
+ is also a root. These root

pairs are denoted as type I root pairs. If|3| = 1,3 = 3∗−1. In this case, there can be two
independent roots. These roots are denoted as type II roots. In the limitk→ 0, Eq. (22) has
the form

m∑
i=1

aj

2 j
(3− j −3 j ) = 0, (23)

which always has the solutions

3−3−1 = 0⇒ 3 = ±1. (24)

Changing notation to that of effective wavenumbers,

3 = exp(i k̃1x)⇒ u(x, t) = exp

(
i k̃

(
x − k

k̃
t

))
, (25)

type I root pairs correspond to conjugate pairs of complex effective wavenumbersk̃ andk̃∗,
while type II roots yield real̃k. Conjugate pairs of complex effective wavenumbers represent
a pair of solutions, one of which grows exponentially in amplitude to the right, the other
to the left. Also, fork = 0, the two solutions yield̃k = 0 andk̃ = kmax. Clearly, of the 2m
solutions, only one solution with realk̃ can be a valid approximation to the exact solution.
The remainder are spurious. When Eq. (20) is used to solve Eq. (19), the coefficients of
the various solutions are determined by the boundary conditions and special differencing
schemes used near the boundaries. Clearly, the boundary schemes should be chosen to make
the amplitudes of spurious solutions as small as possible.

To see how this works, consider the tridiagonal and pentadiagonal interior scheme (see
Table I). For these two cases, the coefficients in the characteristic polynomials and their
corresponding roots are given in Table V.32 and33 are complex conjugate pairs while30

and31 have magnitude 1.30 represents the approximation to the exact solution exp(ik1x)
to the order associated with the scheme and it has a positive group velocity.31 is a spurious
wave with a negative group velocity.32 and33 are spurious waves growing exponentially in
magnitude to the right and left, respectively. For the spurious waves that grow exponentially
to the right, the magnitude of the waves is largest at the right boundary. Thus, by arranging
the right boundary schemes to make the32 wave (for example) small at the right boundary,
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TABLE V

Coefficients and Roots of Characteristic Polynomials

(a) Coefficients of Characteristic Polynomials
Band-width c1 c2

3
3

4
+ 1

4
ik1x N.A.

5
20

27
+ 4

9
ik1x

25

216
+ 1

36
ik1x

(b) Roots of Characteristic Polynomials
Band-width 30 31 32 33

3 exp(ik1x) −1.0000+ 0.3333ik1x N.A. N.A.
+O((k1x)5) + 0.0555(k1x)2+ · · ·

5 exp(ik1x) −1.0000+ 0.1636ik1x −6.2397 −0.1603
+O((k1x)9) + 0.0134(k1x)2+ · · · +1.1118ik1x + 0.0286ik1x

− 0.0733(k1x)2 + · · · +0.0070(k1x)2 + · · ·

Note.The various coefficients in the expressions for3 are given to four digit accuracy.

the32 solution is small everywhere, regardless of the length of the domain. Similarly,
waves growing to the left (e.g.,33), should be controlled at the left bourdary. For waves
with |3| = 1, or equivalently real̃k, the “group velocity”vg = dk̃/dk determines which
boundary should control the wave. With positive group velocity, the left boundary controls
the wave because when solving the transient problem (17), information from the boundary
will propagate into the domain from the left. Similarly, waves with negative group velocity
are controlled at the right boundary. Thus, the spurious solution31 will be controlled by
the right boundary scheme, while the physical boundary conditions at the left boundary will
control the physical solution30.

To determine the appropriate inflow boundary schemes, consider the general solution,
which near the inflow boundary can be written as

v j = p03
j
0 + p33

j
3 + O((k1x)n), (26)

wheren is the order of the error in the interior scheme (5 or 9 for tridiagonal and pen-
tadiagonal schemes, respectively). Note that for the tridiagonal scheme,32 and33 can
be considered to be zero. TheO((k1x)n) term is the contribution of the31 and32

waves, which will be this small by construction of the right boundary schemes. Using this
expression, the left boundary schemes are constructed to makep0 = 1+ O((k1x)n) and
p3 = O((k1x)n) (for the pentadiagonal scheme). This is accomplished using schemes of
the form

m+i∑
j=0

αi j v
′
j =

1

1x

3m−i∑
j=0

ai j v j for 0≤ i ≤ m− 1, (27)

for the firstm= w− 1
2 points, except for the boundary point(i = 0), which is replaced by

the boundary conditionv0 = 1. The coefficients for bandwidth 3 and 5 (m= 1 and 2) are
shown in Table VI. A Taylor series analysis of these schemes shows them to be of the same
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order as the interior scheme, and indeed this is how they were derived. This appears to be
a sufficient condition for the suppression of the spurious waves to the desired order. Note,
however, that the theory of Gustafsson [5, 15] implies that boundary schemes one order
lower than the interior should be adequate to ensure global convergence consistent with the
order of the interior scheme.

Near the outflow boundary, the general solution can be written similarly to (26),

vN−l = p′03
−l
0 + p′13

−l
1 + p′23

−l
2 + O((k1x)n), (28)

where p′i = pi3
N
i and N is the grid number of the right boundary. Boundary schemes

that are “mirror images” of the left boundary scheme result inp′1 and p′2 = O((k1x)n)
(pentadiagonal scheme). Thus, we have

m+N−i∑
j=0

αN−i j v
′
N− j =

1

1x

3m−N+i∑
j=0

−aN−i j vN− j for N ≥ i ≥ N −m+ 1, (29)

where again the coefficients are given in Table VI.
The boundary scheme analysis presented here is similar to the GKS stability analysis of

boundary treatments in Carpenteret al. [5], in which a similar model problem is used and
in which the same spurious waves are treated. However, in Carpenteret al., the assumed
temporal form of the solution is more general in that the frequencyk (in our notation, see
Eq. (18)) is allowed to be complex. The concern is then whether the time-periodic solutions
of Eq. (17) of the form used here are stable. For the fourth-order tridiagonal scheme,
Carpenteret al. show the combined interior and boundary schemes to be GKS stable, but
they do not treat the eighth-order pentadiagonal scheme discussed here. The stability of the
solutions to (19) will be discussed in Section 4.4.

4.2.2. Nonuniform Grids

Another issue that needs to be addressed is the formulation of the compact finite differ-
ence scheme with nonuniform grids. The approach is to apply a mapping which uses the

TABLE VI

Coefficients of the Boundary Formulation for the First Derivative

Band-width i αi 0 αi 1 αi 2 αi 3

3 0 1 3 0 0
5 0 1 12 15 0

5 1
1

15
1 2

2

3

Band-width i ai 0 ai 1 ai 2 ai 3 ai 4 ai 5 ai 6

3 0 −17

6

3

2

3

2
−1

6
0 0 0

5 0 −79

20
−77

5

55

4

20

3
−5

4

1

5
− 1

60

5 1 −247

900
−19

12

1

3

13

9

1

12
− 1

300
0
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uniform mesh scheme in the mapped coordinate. The mesh mapping is given in Eq. (7).
The discretization equations (8), (27), and (29) are modified by the mesh mapping

dv

dx

∣∣∣∣
i

= dv

dξ

∣∣∣∣
i

dξ

dx

∣∣∣∣
i

. (30)

Thus, the equation to be solved isdv
dξ

dξ
dx = ikv. The same interior and boundary scheme are

then used inξ .

4.3. Comparison

Tests based on the solution of the first-order wave equation were carried out withN = 100.
Before discussing the results, however, it should be noted that different from the effective
wavenumbers, the accuracy of the solution of the wave equation is dependent on the number
of intervalsN apart from the wavenumber. In this sense, the results here are less general
than those of the effective wavenumber. Nevertheless, using the sameN for both schemes
allows us to compare their order of convergence and resolution.

The results on uniform grids are discussed first. TheL2 errors in the representation of
the solution of the wave problem using B-spline collocation and compact finite difference
methods are shown in Fig. 8. For B-spline collocation methods, the errors vary withk like
kw+2. Notice that in periodic domains, the convergence rates of the eigenvalue of the first
derivative operator and the eigenfunction arekw+2 andkw+1, respectively (see Figs. 4 and 6
and Table III). For compact finite difference schemes, theL2 error varies withk like k2w−1.
This is consistent with the theoretical convergence rate (Fig. 4 and Table III), though the
curve is not smooth. Apparently, the boundary condition and boundary schemes do not
affect the convergence rate of either scheme.

An error of B-spline solution that varies askw+2 is curious because theL2 error is bounded
from below by the error in representing the complex exponential, which as indicated in
Table III, converges likekw+1. To resolve this apparent inconsistency, note that the equations
for the B-spline coefficients have the same form as the compact finite difference equations,
and so the analysis in Section 4.2.1 applies to them as well. The solution is characterized

FIG. 8. L2 error in the representation of the solution of the wave equation with wavenumberk on uniform
grids for matrix bandwidth(a) 3, (b) 5: ——, B-spline collocation; - - - -, compact finite difference.
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FIG. 9. L2 representation error with wavenumberk for matrix bandwidth 3: ——, solution of the wave equation
(17) in bounded domain; - - -, complex exponential in periodic domain.

by roots of the characteristic polynomial (3 j ), only one of which is an approximation to
the “exact” solution. In this case the “exact” solution (away from the boundaries) is the
dependence of the B-spline coefficients for representation of the complex exponential in
an infinite domain, i.e.,30 = expik1x. With the exact B-spline coefficients, theL2 error
converges likekw+1. However, in the solution to (17), the analysis in Section 4.2.1 shows
that there are errors in the B-spline coefficients of order(k1x)w+2, due to the error in30

and the errors inpj . For largek, the errors in the B-spline coefficients dominate, resulting
in a kw+2 dependence, and for sufficiently smallk the representation error of the complex
exponential dominates, resulting in akw+1 dependence. This is illustrated in Fig. 9, in which
the error in the solution to (19) is shown along with the representation error of the complex
exponential for thew = 3 case. The change fromk5 tok4 dependence occurs wherekL ∼ 1
(or k/kmax∼ 1/Nπ , whereN = 100), which is consistent with the fact that the dominant
error arising from the error in3N

0 is of orderkL(k1x)w+1 (see Section 4.2.1). Note that
for B-spline Galerkin solutions of this problem, the error in representing the complex
exponentials, which goes likek

w+ 1
2 (see Table III), dominates over the errors in30 and

pj for all k, resulting in an overall convergence ofk
w+ 1

2 . For the compact finite difference
methods, the error decreases likek2w−1, consistent with the analysis of Section 4.2.1 and
the convergence rates listed in Table III.

When plotted versusk/kmax= k1x/π , the error curves must depend onN, since the
error behaves askL(k1x)n−1 ∼ N(k1x)n. One way to obtain a curve that is valid for allN
is to plot error/N versusk/kmax. The resulting curve would not shift asN changes except
when the error is close to 1, and, for B-spline collocation, whenk/kmax≤ 1/Nπ (where
the representation error dominates).

Perhaps more important than the order of convergence is the resolution of the two schemes.
The well-resolved fraction of the wavenumber range for the solution of the wave equation
is shown in Table VII. It can be seen that for tridiagonal schemes, the two have almost the
same resolution. For pentadiagonal schemes, compact finite difference has better resolution
due to the higher order of convergence.

Another issue is the effect of a nonuniform grid. TheL2 errors in the representation of
the solution of the wave problem using the two numerical schemes on nonuniform grids
are shown in Fig. 10. Here, the wavenumber is normalized by the maximum wavenumber
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TABLE VII

Resolved Fraction for the Solution of the Wave Equation

for Uniform Grid Distribution

B-spline collocation Compact finite difference

Band-width 10% 1% 0.1% 10% 1% 0.1%

3 0.25 0.15 0.10 0.24 0.15 0.09
5 0.40 0.30 0.22 0.45 0.34 0.27

kmax= π
1xmax

, where1xmax is the maximum grid spacing. Basically, both schemes maintain
the same convergence rate, as in the case of uniform grids. Note that for the compact finite
difference schemes, the curves turn up at the lowest wavenumber and the cause is not clear.
With regard to the resolved fraction, Table VIII indicates that the two tridiagonal schemes
again have the same resolution. (Note however that in nonuniform grids, B-spline collocation
has elements outside the three “main” diagonals in the interior.) For pentadiagonal schemes,
compact finite difference has better resolution.

The order of convergence of the two schemes suggests that the difference in resolution
properties between compact finite difference and B-spline collocation will become big-
ger as the matrix bandwidth increases. Also, comparing results in periodic and bounded
domains (Tables IV and VII), it is found that the resolution in finite domains is sub-
stantially lower. In particular, the error reaches 1 atk/kmax ranging from 0.4 to 0.6 in
Fig. 8.

This plateau of the error at 1 for moderate values ofk/kmax is also caused by dominance
of the error in3N

0 , which is the error (of function values or B-spline coefficients) at the
right boundary. In terms ofk/kmax, this error goes likeN(k/kmax)

n, wheren is w + 2 for
B-spline collocation and 2w − 1 for compact finite difference. This error is of order 1 when
k/kmax≈ N−1/n, and thus for largerk/kmax the overall solution error should be of order 1.
With N = 100 (as in this case) and withn = 5, 7, and 9 the value ofN−1/n is 0.4, 0.52,
and 0.60, respectively, which is in reasonably good agreement with the start of the plateau
for w = 3,w = 5 B-splines andw = 5 compact finite difference.

FIG. 10. L2 error in the representation of the solution of the wave equation with wavenumberk on nonuniform
grids for matrix bandwidth(a) 3, (b) 5: ——, B-spline collocation; - - - -, compact finite difference.
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TABLE VIII

Resolved Fraction for the Solution of the Wave Equation

for Nonuniform Grid Distribution

B-spline collocation Compact finite difference

Band-width 10% 1% 0.1% 10% 1% 0.1%

3 0.29 0.19 0.12 0.29 0.19 0.12
5 0.47 0.35 0.25 0.55 0.43 0.34

4.4. Stability of the Time-Harmonic Solutions

The time-harmonic solutions evaluated in Section 4.3 were forced to be time-harmonic,
so there is no guarantee that these solutions are stable when the wave equation is solved
as an initial value problem. To evaluate this, we need only examine the eigenvalues of the
relevant approximate operator. A perturbationδu from one of the harmonic solutions of
(17) is governed by

δut + δux = 0 0≤ x ≤ 1, δu(0, t) = 0. (31)

When numerically discretized this equation has the formMδαt = D1δα, whereδα is ei-
ther the B-spline coefficient vector (B-spline collocation) representingδu or the vector
of grid point values ofδu (finite difference). Consistent with the implementation for the
time-harmonic solutions, boundary conditions are implemented by replacing the equation
associated with the point atx = 0 with δ(α0)t = 0, whereδα0 is associated withx = 0.
This has the effect of replacing the first (say) row ofM with all zeros, except for a one in
theδα0 column, and replacing the first row ofD1 with all zeros. Call the modified matrices
M̃ and D̃1, respectively, Eq. (31) can be rewrittenδαt = M̃−1D̃1δα. All solutions of this
equation will decay to zero provided all the eigenvalues ofM̃−1D̃1 have negative real parts.

These eigenvalues have been computed for the bandwidth 3 and 5 schemes examined in
this section withN = 20. For tridiagonal compact finite difference schemes, the eigenvalues
do indeed have negative real parts.1 However, the B-spline collocation methods each produce
two eigenvalues with positive real parts. As an example, the eigenspectra of the bandwidth 3
and 5 B-spline collocation operator are shown in Fig. 11, along with the corresponding finite
difference eigenvalue spectra. The eigenfunction associated with the unstable eigenvalue
oscillates with wavelength 21x and decays rapidly away from the in-flow boundary. Thus,
when solving (17) as an initial value problem with the B-spline collocation methods, this
growing eigenfunction will be observed, rather than the time-harmonic solutions.

In the applications we have in mind, such as solution of the Navier–Stokes equations,
the equations are not strictly hyperbolic. There is a viscous damping term, which if the
viscosity is large enough would stabilize this numerical instability. For this to occur,
the viscous damping rate, which is approximatelyνa/1x2 (a depends on the details of

1 In [5], the eigenvalues for the bandwidth 3 schemes were computed and found to include eigenvalues with
positive real parts. However, the boundary conditions are implemented differently. Instead of modifyingM and
D1 as described above, the productM−1D1 was modified by zeroing the first row. (Private communication with
M. H. Carpenter.) These are not equivalent.
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FIG. 11. Numerically determined eigenvalue spectrum for B-spline collocation scheme (×) and compact
finite scheme (s) with matrix bandwidth of(a) 3, (b) 5 andN = 20. For B-spline method, collocation points
are chosen at the maxima of the splines. Also, for B-spline with bandwidth 5, there is an eigenvalue−42.48 not
shown in the figure.

the second derivative approximation, and for high resolution schemes is a substantial frac-
tion of π2; see Section 3.2), must be larger (in magnitude) than the unstable eigenvalue. If
λRmax1x = 0.3 as it is for the bandwidth 5 scheme, then the stability requirement would
be that the cell Reynolds number is less than 3.3a (1x/ν < 3.3a in this case). This is not
an arduous cell Reynolds number requirement.

To avoid these stability problems all together, it would be preferable if the schemes could
be modified to yield all eigenvalues with a negative real part. In the B-spline collocation
scheme, the only aspect that can be modified is the location of the collocation points. Away
from the boundaries, the collocation points are fixed by the need to preserve the spatial
symmetry of the operators. However, the exceptional collocation points near the boundary
(those that are not coincident with a knot; see Section 2.1.3) can be adjusted. As it happens,
the maximum real part of the eigenvalues is sensitive to the placement of these collocation
points, as is shown in Fig. 12. For the two B-spline schemes shown here, moving these
exceptional points toward the boundary a small amount (5% of the knot spacing) stabilizes
the unstable eigenvalues. The change in collocation point location has no impact on the

FIG. 12. Variation of the maximum real part of the eigenvalues,λRmax, as near-boundary exceptional col-
location points are shifted from the B-spline maximum location by an amounts: ——, bandwidth= 3; - - -,
bandwidth= 5. Negatives is toward the boundary.
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FIG. 13. L2 error in the representation of the solution of the wave equation with wavenumberk on
nonuniform grids for matrix bandwidth 5: ——, eighth-order interior, sixth-order near-boundary, third-order
boundary; - - - -, consistent eighth-order.

resolution properties discussed earlier. For bandwidths 7 and 9, it was found that a shift of
6.5% of knot spacing stabilizes the unstable eigenvalues. At this time it is not clear why
moving the exceptional collocation points improves the stability of the B-spline schemes at
an inflow boundary. It is also not clear if larger shifts will be required to stabilize the higher
order (bandwidth) schemes.

If one were numerically simulating Eq. (17), the stability of the time discretization would
be an issue. In an explicit scheme, there would be a time step restriction that is fixed by the
largest eigenvalues of the homogeneous numerical operators, such as those shown in Fig. 11.
The value ofλI max1x (the maximum imaginary part of the eigenvalues) is insensitive to
1x, and is in good agreement with̃kmax1x, wherek̃max is the maximum attained value of
the effective wavenumber (see Fig. 2).

In compact finite difference methods, boundary schemes of the same order as the interior
can be unstable [5, 25]. This stability problem is solved by using boundary schemes of lower
order. For high-resolution methods such as the eighth-order pentadiagonal scheme, stable
boundary schemes of compatible order can be very difficult to find. Carpenter developed
stable sixth-order boundary schemes using a rather involved stability analysis [5]. Mahesh
[25] chose sixth- and third-order for near-boundary and boundary points respectively to
stabilize the overall scheme. However, this cure comes at a high cost in resolution and
order of accuracy. Mahesh [25] pointed out that lower order boundary schemes reduce the
formal order of the overall scheme to one greater than that of the boundary [15]. A test was
carried out using eighth-order pentadiagonal interior, sixth-order near-boundary (second
and(n− 1)th row), and third-order boundary (nth row) schemes. This scheme has a much
lower resolution than the eighth-order interior and boundary schemes (Fig. 13).

5. HEAT EQUATION IN BOUNDED DOMAINS

In this section, the eigenvalue problem arising from the heat equation is solved using
B-spline collocation and compact finite difference methods. The problem is defined as

v′′ = λv for 0< x < 1, (32)

with some boundary conditions, the most common ones being the Dirichlet (v(0)= v(1)=0)



TABLE IX

Coefficients of the Boundary Formulation for the Second Derivative

Band-width i αi 0 αi 1 αi 2 αi 3

3 0 1 11 0 0

5 0 1
18922

563

65943

563
0

5 1
23

688
1

2335

688

2659

3096

Band-width i ai 0 ai 1 ai 2 ai 3 ai 4

3 0 13 −27 15 −1 0

5 0
2186893

101340

526369

5067
−3296517

11260

1940803

10134
−583529

20268

5 1
753829

1114560

57209

20640
−58367

8256

172793

55728

4453

8256

Band-width i ai 5 ai 6 ai 7

3 0 0 0 0

5 0
14802

2815
−14839

20268

2659

50670

5 1 − 391

20640

529

1114560
0

FIG. 14. Error of the eigenvalues of the heat equation with wavenumberk on uniform grids for matrix
bandwidth(a) 3 (b) 5: ——, Dirichlet boundary conditions; - - - -, Neumann boundary condition, both for B-
spline; – – –,Dirichlet boundary condition; -·-·-, Neumann boundary condition, both for compact finite difference.

FIG. 15. Error of the eigenfunctions of the heat equation with wavenumberk on uniform grids for matrix
bandwidth(a) 3, (b) 5: ——, Dirichlet boundary condition; - - - -, Neumann boundary condition, both for
B-spline; – – –, Dirichlet boundary condition; -·-·-, Neumann boundary condition, both for compact finite
difference. For the compact finite difference, with bandwidth of 3 and Dirichlet boundary conditions, the
eigenfunctions are exact to round-off errors.

538
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TABLE X

Resolved Fraction for the Eigenvalues for Uniform Grid Distribution

B-spline collocation Compact finite difference
Boundary

Bandwidth condition 10% 1% 0.1% 10% 1% 0.1%

3 Dirichlet 0.33 0.10 0.03 0.66 0.36 0.20
3 Neumann 0.36 0.10 0.03 0.46 0.36 0.16
5 Dirichlet 0.80 0.46 0.26 >0.76 0.50 0.40
5 Neumann 0.76 0.46 0.26 0.43 0.36 0.23

and Neumann (v′(0) = v′(1) = 0) boundary conditions. In both cases, the eigenvalues are

λk = −(πk)2, (33)

wherek is an integer. The corresponding eigenfunctions are ˜vk(x) = sin(πkx) andṽk(x) =
cos(πkx) for Dirichlet and Neumann boundary conditions respectively.

5.1. B-Spline Collocation Formulation

Discretizing with B-spline collocation method, we obtain the matrix equationλMα =
D2α, whereM is the mass andD2 the second derivative operator matrix, andα the B-spline
coefficient vector for the eigenfunctions. For Dirichlet boundary conditions,v0 = vN = 0.
For Neumann boundary conditions,v′0 andv′N are set to zero.

5.2. Compact Finite Difference Formulation

Similar to the case of first derivative, the discretized derivative operators are derived from
Eq. (9) in the interior. Near the boundary, the symmetry breaks down and the corresponding
equation becomes

m+i∑
j=0

αi j v
′′
j =

1

(1x)2

3m+1−i∑
j=0

ai j v j for 0≤ i ≤ m− 1,

(34)
m+N−i∑

j=0

αN−i j v
′′
N− j =

1

(1x)2

3m+1−N+i∑
j=0

aN−i j vN− j for N ≥ i ≥ N −m+ 1,

wherem= w− 1
2 . The coefficients in Eq. (34) are determined by matching the Taylor series

coefficients to one order less than the interior for tridiagonal schemes and to the same
order of the interior for pentadiagonal schemes (using boundary of the same order for
tridiagonal schemes gives rise to poor resolution for unknown reasons). The coefficients
are shown in Table IX for the two schemes. After discretization, a generalized eigenvalue
problemλM2α = D2α is obtained, whereM2 is the mass,D2 the second derivative operator
matrix, andα the eigenfunction. The generalized eigenvalue problem can be solved with
the appropriate boundary condition.

5.2.1. Boundary Conditions

The Dirichlet boundary conditions are implemented by settingv0 = vN = 0. For
Neumann boundary conditions, a one-sided explicit (i.e., not compact) finite difference
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scheme is used to setv′0 = v′N = 0. Note that this make the boundary scheme inconsistent
with the interior scheme. Also, a very long one-sided finite difference expression is required
to maintain the same order as the interior compact finite difference approximations.

5.2.2. Nonuniform Grids

To solve the problem on a nonuniform grid, a mesh mapping is used as in the wave
equation. Notice from the chain rule,

d2v

dx2
=
(

dξ

dx

)2 d2v

dξ2
+ d2ξ

dx2

dv

dξ
. (35)

The derivative in the nonuniformx-coordinate is expressed in terms of those in the trans-
formed uniformξ -coordinate. In theξ -coordinate, there are finite difference representation
of the derivative operators (expressed asM−1

1 D1 and M−1
2 D2. Note thatM1 and M2 are

different). The finite difference approximation of the second derivative operator can hence
be expressed as in Eq. (35).

5.3. Comparison

Tests based on the eigenvalue problem are performed usingN = 30. Results based on
different N suggest thatN has no influence on the order of convergence and minor in-
fluence on the well-resolved fraction. The results obtained on uniform grids are presented
first. The errors in approximating the eigenvalues are shown in Fig. 14. Regardless of the
boundary conditions, B-spline collocation schemes have eigenvalue errors which decrease
with wavenumber askw+1, while compact finite difference has a convergence rate ofk2w.
Both of the above are consistent with their corresponding convergence rates in periodic
domains (see Table III). For compact finite difference, however, the boundary conditions
do have an effect on the magnitude of the error. Neumann boundary conditions give larger
errors in the eigenvalues, perhaps due to the boundary approximation ofv′. Also, with the
compact finite difference, there are some sharp decrease in error at particular wavenumbers
for reasons that are not clear. At high wavenumbers, wiggles appear on the compact finite
difference curves irrespective of the boundary conditions. With regard to resolution, we refer
to Table X, which gives the resolved fraction for the eigenvalues. In many cases, compact
finite difference schemes provide better resolution for the eigenvalues. For pentadiagonal
scheme, B-splines have better resolved fractions in many cases. However, due to the high
convergence order of the compact finite difference, the more stringent the tolerance for
resolved fractions, the better the compact finite difference does.

The L2 errors of the eigenfunctions of the heat equation are shown in Fig. 15. For
the B-spline collocation schemes, the convergence rate for both Dirichlet and Neumann
boundary conditions appears to bekw+1, but in the Neumann case this asymptotic rate
is not attained untilk < 0.06, with the resulting impact on resolution. For compact finite
difference schemes, the eigenfunctions have errors that converge at a rate approximately
equal tok2w. However, with Neumann boundary conditions, the errors are again larger.
In fact, using the Dirichlet boundary condition, the tridiagonal schemes give a solution
that is exact to round-off errors. It is also very interesting to note that the pentadiagonal
scheme curve shows two sharp decrease at

√−λ/kmax= 1
3 and

√−λ/kmax= 2
3. At these

two particular wavenumbers, the symmetries of the approximate eigenfunctions make the
point representations exact. Table XI shows the resolved fraction of eigenfunctions. As for
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TABLE XI

Resolved Fraction for the Eigenfunctions for Uniform Grid Distribution

B-spline collocation Compact finite difference
Boundary

Bandwidth condition 10% 1% 0.1% 10% 1% 0.1%

3 Dirichlet 0.43 0.23 0.13 1.00 1.00 1.00
3 Neumann 0.40 0.13 0.06 0.23 0.16 0.10
5 Dirichlet 0.73 0.46 0.30 0.43 0.37 0.33
5 Neumann 0.93 0.56 0.33 0.36 0.20 0.16

TABLE XII

Resolved Fraction for the Eigenvalues for Nonuniform Grid Distribution

B-spline collocation Compact finite difference
Boundary

Bandwidth condition 10% 1% 0.1% 10% 1% 0.1%

3 Dirichlet 0.44 0.09 <0.05 0.73 0.44 0.19
3 Neumann 0.44 0.14 0.04 0.74 0.54 0.44
5 Dirichlet 0.92 0.53 0.29 0.73 0.49 0.34
5 Neumann 0.97 0.53 0.29 0.54 0.29 0.14

TABLE XIII

Resolved Fraction for the Eigenfunctions for Nonuniform Grid Distribution

B-spline collocation Compact finite difference
Boundary

Bandwidth condition 10% 1% 0.1% 10% 1% 0.1%

3 Dirichlet 0.39 0.19 0.09 0.44 0.24 0.14
3 Neumann 0.39 0.14 0.04 0.29 0.09 <0.04
5 Dirichlet 0.72 0.43 0.29 0.39 0.29 0.24
5 Neumann 0.72 0.43 0.29 0.25 0.15 0.09

FIG. 16. Error of the eigenvalues of the heat equation with wavenumberk on nonuniform grids for matrix
bandwidth(a) 3,(b) 5: ——, Dirichlet boundary condition; - - - -, Neumann boundary condition, both for B-spline;
– – –, Dirichlet boundary condition; -·-·-, Neumann boundary condition, both for compact finite difference.
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FIG. 17. Error of the eigenfunctions of the heat equation with wavenumberk on nonuniform grids for matrix
bandwidth(a) 3,(b) 5: ——, Dirichlet boundary condition; - - - -, Neumann boundary condition, both for B-spline;
– – –, Dirichlet boundary condition; -·-·-, Neumann boundary condition, both for compact finite difference.

the eigenvalues, compact finite difference schemes in general provide better resolution for
tridiagonal methods while B-splines do better for pentadiagonal schemes.

On nonuniform grids, the behavior of both B-spline collocation and compact finite dif-
ference schemes is shown in Fig. 16 and 17 and Tables XII and XIII. The errors in the eigen-
values of the heat equation are shown in Fig. 16. B-spline collocation methods maintain the
same convergence rate ofkw+1 as in the case of uniform grids irrespective of the boundary
conditions. Compact finite difference schemes, however, show a degradation. Convergence
rates of the eigenvalues is 2 to 3 orders less than the corresponding rate ofk2w on uniform
grids, with Neumann boundary conditions giving worse convergence rates. Regarding res-
olution, compact finite difference provides better resolution for bandwidthw = 3, while
B-spline collocation schemes provides better resolution for bandwidthw = 5.

The L2 errors of the eigenfunctions of the heat equation are shown in Fig. 17. B-spline
collocation schemes give convergence rates ofkw approximately, with Dirichlet boundary
conditions giving slightly better solutions at lowk. The degradation of resolution is not
serious when nonuniform grids are used instead of uniform ones. Compact finite differ-
ence schemes, however, show quite serious degradation of convergence and resolution on
nonuniform grids. They have convergence rates of aboutkw, compared tok2w on uniform
grids. A very interesting result is that B-spline and compact finite difference schemes appear
to have the same convergence rates on nonuniform grids. From table XIII, it can also be seen
that B-spline collocation methods have better resolution properties on nonuniform grids.

6. DISCUSSION AND CONCLUSIONS

The results of this paper indicate that in many situations compact finite difference schemes
have better resolution and convergence properties than the other numerical methods tested.
The comparisons were done for schemes with the same matrix bandwidths, which we use
as a surrogate for computational cost. Furthermore, it was shown that finite element and
B-spline Galerkin methods had inferior resolution to compact finite difference and B-spline
collocation. There are several aspects of these results that deserve further discussion.
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Regarding high-order finite element methods, it was noted that a reason for their lower
resolution in these tests was their lower order (C0 andC(d−1)/2) continuity at the element
boundaries (i.e., knots), whereas the spline basis retains as high a degree of continuity as
possible, given the order of the piecewise polynomial representation. In essence, in spline
methods, an increase in the degree of the polynomials is used to increase the degree of
continuity, while inC0 andC(d−1)/2 finite elements, it is used to increase the number of
degrees of freedom of the representation. The results of the tests here suggest that the added
degrees of freedom do not produce much in the way of added accurately represented modes,
resulting in poor resolution properties. However, the improved resolution of splines is not
without cost; that is, the representation of the polynomials in each interval (element) is
not iso-parametric, a very convenient property of finite element representations. Conse-
quently, it is much easier to formulate multidimensional finite elements on complex and/or
unstructured grids, than it is to formulate spline methods.

It was also noted that piecewise polynomial Galerkin methods yielded poorer represen-
tations of complex exponentials (the derivative eigenfunction) than collocation methods.
This is true for both finite element methods and spline methods. This is a curious result
because Galerkin approximations minimizeL2 error for a given representation. The reason
for the curious result is that we are comparing methods with the same matrix bandwidth.
For example, a Galerkin method that yields pentadiagonal matrices has cubic polynomi-
als, whereas a pentadiagonal collocation methods has quintic polynomials. The result is
a fourth-order accurate representation for Galerkin and a sixth-order accurate representa-
tion for collocation. However, there are other reasons one might choose a Galerkin method,
despite its higher cost; for example, a Galerkin method is trivially shown to be conservative.

The two methods discussed here with the best convergence and resolution properties are
compact finite difference and spline collocation, and the comparison between them includes
four major issues that must be traded off against the improved order of accuracy and in many
cases better resolution of the finite difference methods:

1. The generally superior convergence and resolution of compact finite difference com-
pared to B-spline collocation is simply due to the fact that in the finite difference case,
the “mass matrix” is not constrained to be the same for all derivatives. There may, how-
ever, be costs in code complexity or computational effort in having different mass matrices,
depending on the details of the problem being solved.

2. Another difference is in the treatment near a boundary. In the finite difference case,
special difference schemes must be formulated near the boundary, and such boundary treat-
ments can be difficult to formulate. For the wave equation, a criterion for a boundary
treatment with good resolution was developed in Section 4.2.1, and schemes that satisfy
the criterion were found by imposing a formal order of accuracy consistent with the in-
terior scheme. However, consistent order of accuracy is a necessary but not necessarily
sufficient condition for the criterion to be satisfied, and directly constructing schemes to
satisfy the criterion is prohibitively cumbersome in all but the simplest cases (e.g., the
tridiagonal scheme). Thus, we do not have a practical constructive prescription for bound-
ary schemes that satisfies the criterion in Section 4.2.1. Furthermore, the criterion does
not guarantee the stability of the resulting combined interior/boundary schemes. Indeed,
the bandwidth 5 scheme constructed this way was unstable. Modifying such schemes to
be stable as in Carpenter [5] is an arduous task, which has not been done for schemes of
order greater than sixth. The lack of stable high-order boundary schemes prompted some



544 KWOK, MOSER, AND JIMÉNEZ

authors to combine high-order interior representations with much lower order boundary
schemes (e.g., Mahesh [25]), which spoils the accuracy and resolution of the combined
scheme.

In the heat equation problem, the development of a criterion like that used in the ad-
vection equation for good boundary schemes is not as obvious, so we have an even less
well defined procedure for the boundary treatment in this case. Finally, recall that for
the heat equation, with Neumann conditions, an approximation of the first derivative at
the boundary had to be devised, so the derivative boundary condition could be imposed.
This was essentially ad hoc, and was not inherently consistent with the remainder of the
scheme.

These boundary complications are in principle surmountable in finite difference methods;
but, they are completely obviated in B-spline methods, since the B-spline representation
(like any other functional representation) unambiguously defines the near-boundary scheme.
The only complication is that in B-spline collocation the location of the near-boundary col-
location points that are not attached to knots must be specified. An algorithm based on the
maxima of the B-spline functions was proposed, but at the inlet their location affects the
stability of the scalar advection scheme. By slightly adjusting the location of these collo-
cation points (0.0651x) toward the boundary, it is possible to obtain stable representations
for bandwidth up to 9 (tenth order).

3. On a nonuniform mesh, the spline method can be used directly, without recourse to a
mapping to a domain with a uniform mesh, as we did for the finite difference case. Thus,
the method can easily be applied to an arbitrary mesh, for which no analytic mapping is
known. Besides, the resulting approximations are simpler, with no explicit metric terms,
and in the case of approximating the second derivative, no first derivative term appears. Of
course, one can construct finite difference methods on arbitrary meshes as well, either by
direct construction or by numerically defined mappings. But the process is cumbersome,
and for direct construction generally yields schemes that are lower order than the uniform
mesh schemes (for the same matrix bandwidth). With the spline methods, the nonuniform
mesh formulation is no different from the uniform mesh.

4. In Sections 4 and 5, the error associated with the spline collocation method was well
behaved and consistent with the results of the Fourier analysis in Section 3. The same cannot
be said for the finite difference schemes. For them, the error spectra were more erratic, with
a variety of unexplained features. Furthermore, in at least one case (i.e., nonuniform mesh
heat equation with Neumann conditions), the convergence rates appeared to be the same as
its spline counterpart, inconsistent with the simple Fourier analysis in Section 3.

Thus, when using a high-order spline collocation scheme instead of compact finite dif-
ference with the same bandwidth, one is trading away a potentially higher convergence rate
and somewhat better resolution in many cases for a more straightforward and robust formu-
lation. And, as suggested by the results of Section 4 and 5, in complicated situations, there
is no guarantee that the finite difference method would actually yield the theoretical higher
convergence rate. Finally, Shariff and Moser [34] showed that a B-spline representation
could be used on embedded meshes while preserving the high-order convergence of the
schemes. They used a Galerkin formulation, but the same general technique is applicable
using collocation. The only uncertainty is the location of the collocation points. The B-
spline maxima are a obvious choice. However, the stability of the resulting approximations
need to be assessed.
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APPENDIX A: THE B-SPLINE AND FINITE-ELEMENT BASIS

Consider a domain [0, L] divided into N intervals withN + 1 grid points (knots)t0,
t1, . . . tN . N + k B-splines of order k can be generated according to recursion relationship
[8],

Bk
j (x) =

x − t j−k−1

t j−1− t j−k−1
Bk−1

j−1(x)+
t j − x

t j − t j−k
Bk−1

j (x), j = 1, 2, . . . , N + k (A.1)

whereBk
j (x) is the j th B-spline of orderk. The B-spline of order 0 is simply the top hat

function

B0
j (x) =

{
1 if t j−1 ≤ x ≤ t j

0 otherwise.
(A.2)

Close to the boundaries, evaluation ofBk
j (x) involves “virtual points”t j ’s outside the range

of knots (j < 0 or j > N). In periodic domains, these virtual points are given as

t j =
{

tN+ j − L if j < 0

t j−N + L if j > N.
(A.3)

In bounded domains, the virtual points can be placed arbitrarily (either at the boundary
or outside the domain). The choice of virtual points determines the near-boundary basis
functions, but it does not affect the spline solution space, and thus does not impact the
solution. It is most convenient to locate the virtual points at the boundary, thus increasing
the multiplicity of knots there, i.e.,

t j =
{

0 if j < 0

L if j > N.
(A.4)

Figure 18 shows B-splines in periodic and bounded domains.
The i th derivative of the B-splineBk

j is written in terms of lower order B-splines as

di Bk
j

dxi
=

j∑
l= j−1

αi
j l Bk−i

l , (A.5)

where the coefficientsα are found from the recursion [8]

αi+1
j l = (k− i )

αi
j (l+1) − αi

j l

tl − tl−k+i
, (A.6)

FIG. 18. Cubic B-splines in(a) periodic and,(b) bounded domains. Knots are denoted byd.
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with the starting condition

α0
j l = δ j l . (A.7)

To implement the Galerkin and finite element B-spline methods it is necessary to evaluate
definite integrals of the splines and their derivatives, and/or to evaluate the splines and their
derivatives at specified points in the domain. The recursions described above allow the
B-splines to be evaluated. To compute integrals, Gauss quadrature in each interval between
the knots is used, with enough quadrature points for the resulting integrals to be exact. This
calculation procedure is stable to roundoff error [8].

The finite element representation in terms of piecewise polynomials is similar to the spline
representation, differing only in the degree of continuity at the knots (element boundaries).
The same recursion relations can be used to define and evaluate theC0 andC(d−1)/2 finite
element basis by introducing a multiplicity of knots at each knot location [8]. For theC0 and
C(d−1)/2 finite elements each knot point has multiplicity ofd and(d + 1)/2, respectively.
Then evaluation of the finite element basis and the Galerkin integrals is accomplished as
discussed above. Note that the finite element basis functions defined here are not those most
often used in finite element methods, but they result in the same matrix bandwidth and
necessarily yield identical results, since the finite element solution space is the same.

APPENDIX B: DETAILS OF THE FOURIER ANALYSIS

As discussed in Section 2, when the numerical schemes discussed here are applied, the
representation of derivative operators is given by

Mα′ = Dα, (B.1)

where M is the mass matrix,D is the derivative matrix (of whatever order),α is the
vector representing the function (either point values or coefficients), andα′ is the vector
representing the derivative.

For the B-splines or the compact finite difference methods in a periodic domain with
a uniform grid, these matrices are both banded and circulant. The mass matrix is also
symmetric, while the derivative matrix is symmatric for even derivatives and anti-symmetric
for odd derivatives. Thei th row of these equations is given by

n∑
j=−n

mjα
′
i+ j =

n∑
j=−n

djαi+ j , (B.2)

where 2n+ 1 is the bandwidth of the matrices,mj are the mass matrix elements (withm0

on the main diagonal), anddj are the derivative matrix elements. Themj anddj satisfy

mj = m− j dj =
{

d− j even derivatives

−d− j odd derivatives.
(B.3)

The values of the matrix elements are determined as described in Appendix A for the
B-splines and are given in Tables I and II for compact finite difference schemes.
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Since the matrices are circulant, the elements of thej th eigenvector are all given by
ei jl 2π/N , whereN is the size of the matrix and we can identifyk = 2π j/N as the wavenumber
of the mode. The eigenvaluesλ(k) are also easily determined. For odd derivatives,

λ(k) = i
∑n

j=1 2dj sin(k j)

m0+
∑n

j=1 2mj cos(k j)
, (B.4)

and for even derivatives

λ(k) = d0+
∑n

j=1 2dj cos(k j)

m0+
∑n

j=1 2mj cos(k j)
. (B.5)

This is how the effective wavenumbers presented in Section 3 were computed for B-splines
and compact finite differences.

As explained in Section 3.1, the accuracy of the eigenfunctions in the B-spline represen-
tation is simply the accuracy of representing the complex exponential. This is measured as
theL2 errorε in the representation, measured per length of the periodic domain

ε2 = 1

Lx

∫ Lx

0

∣∣∣∣eikx −
∑

j

α j Bj (x)

∣∣∣∣2 dx, (B.6)

whereα j andBj are the B-spline coefficients and functions, and the wavenumberk is given
by k = k̃2π/Lx, with k̃ an integer between−N/2+ 1 andN/2, whereN is the number
of intervals in the domain. Expanding the integrand and integrating theeikxe−ikx term, one
obtains

ε2 = 1− 2

Lx
R
(∑

j

α j

∫ Lx

0
e−ikx Bj (x) dx

)
+ 1

Lx

∑
j

∑
l

α∗j αl

∫ Lx

0
Bj (x)Bl (x) dx.

(B.7)

First, note that since the matrices describing the scheme are circulant, the B-spline co-
efficients are given byα j = aeik j1x, where1x = Lx/N. Then the second term can be
simplified as

∑
j

α j

∫ Lx

0
e−ikx Bj (x) dx =

∑
j

aeik j1xe−ik j1xβk = aNβk, (B.8)

where

βk =
∫ Lx

0
e−ikx B0(x) dx. (B.9)

The third term in (B.7) is simplified by nothing that the integral is the Galerkin mass matrix,
and thateik j1x is an eigenvector. Then

∑
j

∑
l

α∗j αl
∫ Lx

0
Bj (x)Bl (x) dx = |a|2

∑
j

eik j1xe−ik j1xλk = |a|2Nλk, (B.10)
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whereλk is the eigenvalue of the Galerkin mass matrix that is associated with the eigenvector
eik j1x. The eigenvalue is given by

λk = mg0+
ng∑

l=1

2mgl coslk1x, (B.11)

wheremgl andng are the elements and half-bandwidth of the Galerkin mass matrix for the
order splines considered. Finally, the error is written

ε2 = 1− 2

1x
R(aβk)+ 1

1x
|a|2λk. (B.12)

The error is minimized whena = β∗k/λk, and in that case the error is given by

ε =
√

1− |βk|2
1xλk

. (B.13)

The value ofβk can in principle be determined analytically, given the piecewise polynomial
description of the splines. However, it is more convenient to evaluateβk using Gauss
quadrature in each interval. The number of quadrature points is selected to give results
accurate to machine precision. This is how the B-spline errors given in Section 3 were
determined.

The analysis of high-order finite elements is somewhat more complicated, since the basis
functions are not all simple shifts of each other. ForCj elements of ordero, ( j < o), the
number of degrees of freedom per element isd = o− j , and therefore, there ared different
types of basis functions. The entire basis is formed of shifts of thesed basic types. In
a Galerkin method, the derivatives are represented by matrices with several diagonals of
d × d blocks, in which the blocks in each diagonal are identical. The matrix can be thought
of as block circulant or block toeplitz. For finite element representations with continuity
up toC(o−1)/2, the matrices are block tridiagonal, and thei th block row of the derivative
representationMα′ = Dα is written

1∑
j=−1

M̃ j α̃
′
i+ j =

1∑
j=−1

D̃ j α̃i+ j , (B.14)

whereM̃ j andD̃ j are thed × d blocks on thej diagonal of the mass and derivative matrix,
respectively, and ˜αi is a vector of lengthd representing the coefficients of thed basis
functions associated with elementi . Due to symmetry,M̃− j = M̃T

j and D̃− j = D̃T
j for

even derivatives whilẽD− j = −D̃T
j for odd derivatives.

The eigenvectors of such a system are of the formφ̃eik j1x, where1x is the element size
andφ̃ is an eigenvector of thed × d system

D̂φ̃ = λ̃M̂φ̃, (B.15)

where

D̂ = D̃0+ D1eik1x + D−1e−ik1x (B.16)

M̂ = M̃0+ M1eik1x + M−1e−ik1x. (B.17)
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We expectd solutions for each−N/2< k ≤ N/2; each of which will be an approxima-
tion to the the exact derivative eigenvalue and eigenfunction associated with wavenumber
k̃` = k+ 2π`/1x for some−d/2> ` > d/2. The approximate eigenvalues and eigen-
functions can thus be determined by solving the matrix eigenvalue problem given in (B.15),
but it is then necessary to determine which approximate eigenvalue/eigenvector pair (λ̃, φ̃)
is associated with which̃k`. This is accomplished by determining which eigenvector best
approximates each of the complex exponentials. As was done above, theL2 error is mea-
sured

ε2 = 1− 2

1x
R
(

a
d∑

l=1

φl

∫ Lx

0
e−i k̃`x Bl

0(x) dx

)
+ |a|

2

1x

d∑
l=1

d∑
j=1

M̂l j φ̃l φ̃
∗
j , (B.18)

whereBl
0(x) is the basis function of typel at element 0. The scale factora can be determined

as before to minimize the error, and the resulting minimum error has the same form as
Eq. (B.13) with

βk =
d∑

l=1

φl

∫ Lx

0
e−i k̃`x Bl

0(x) dx (B.19)

λk =
d∑

l=1

d∑
j=1

M̂i j φ̃l φ̃
∗
j . (B.20)

By computing this error for each̃k` − φ̂ pair, the best fit to each represented complex
exponential is determined, and in this way, each eigenvalue is associated with a wavenum-
ber it represents. Comparing them yields the error in the eigenvalue, and (B.13) is the
corresponding error in the eigenfunction.

The error shown in Fig. 6 is not the error in the eigenfunction, but the error in the Galerkin
representation of the complex exponential, which, for finite elements, is somewhat less than
the eigenfunction error. The coefficients of the finite element approximation to the complex
exponentialeikx are of the formφ̂eik j1x, whereφ̂ is the solution vector to the system

M̂φ̂ = R, (B.21)

and the right-hand side vectorR is

Rl =
∫ Lx

0
Bl

0eikx dx. (B.22)

The error in this approximation is given by

ε2 = 1− 1

1x
φ̂ × R∗, (B.23)

whereφ̂ × R is real and positive becausêM is conjugate symmetric and positive definite.
This is the error that was plotted in Fig. 6.
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